Go to the previous, next section.

User-defined Functions

Complicated awk programs can often be simplified by defining your own functions. User-defined functions can be called just like built-in ones (see section Function Calls), but it is up to you to define them--to tell awk what they should do.

Syntax of Function Definitions

Definitions of functions can appear anywhere between the rules of the awk program. Thus, the general form of an awk program is extended to include sequences of rules and user-defined function definitions.

The definition of a function named name looks like this:

function name (parameter-list) {
     body-of-function
}

The keyword function may be abbreviated func.

name is the name of the function to be defined. A valid function name is like a valid variable name: a sequence of letters, digits and underscores, not starting with a digit.

parameter-list is a list of the function's arguments and local variable names, separated by commas. When the function is called, the argument names are used to hold the argument values given in the call. The local variables are initialized to the null string.

The body-of-function consists of awk statements. It is the most important part of the definition, because it says what the function should actually do. The argument names exist to give the body a way to talk about the arguments; local variables, to give the body places to keep temporary values.

Argument names are not distinguished syntactically from local variable names; instead, the number of arguments supplied when the function is called determines how many argument variables there are. Thus, if three argument values are given, the first three names in parameter-list are arguments, and the rest are local variables.

It follows that if the number of arguments is not the same in all calls to the function, some of the names in parameter-list may be arguments on some occasions and local variables on others. Another way to think of this is that omitted arguments default to the null string.

Usually when you write a function you know how many names you intend to use for arguments and how many you intend to use as locals. By convention, you should write an extra space between the arguments and the locals, so that other people can follow how your function is supposed to be used.

During execution of the function body, the arguments and local variable values hide or shadow any variables of the same names used in the rest of the program. The shadowed variables are not accessible in the function definition, because there is no way to name them while their names have been taken away for the local variables. All other variables used in the awk program can be referenced or set normally in the function definition.

The arguments and local variables last only as long as the function body is executing. Once the body finishes, the shadowed variables come back.

The function body can contain expressions which call functions. They can even call this function, either directly or by way of another function. When this happens, we say the function is recursive.

There is no need in awk to put the definition of a function before all uses of the function. This is because awk reads the entire program before starting to execute any of it.

Function Definition Example

Here is an example of a user-defined function, called myprint, that takes a number and prints it in a specific format.

function myprint(num)
{
     printf "%6.3g\n", num
}

To illustrate, here is an awk rule which uses our myprint function:

$3 > 0     { myprint($3) }

This program prints, in our special format, all the third fields that contain a positive number in our input. Therefore, when given:

 1.2   3.4   5.6   7.8
 9.10 11.12 13.14 15.16
17.18 19.20 21.22 23.24

this program, using our function to format the results, prints:

   5.6
  13.1
  21.2

Here is a rather contrived example of a recursive function. It prints a string backwards:

function rev (str, len) {
    if (len == 0) {
        printf "\n"
        return
    }
    printf "%c", substr(str, len, 1)
    rev(str, len - 1)
}

Calling User-defined Functions

Calling a function means causing the function to run and do its job. A function call is an expression, and its value is the value returned by the function.

A function call consists of the function name followed by the arguments in parentheses. What you write in the call for the arguments are awk expressions; each time the call is executed, these expressions are evaluated, and the values are the actual arguments. For example, here is a call to foo with three arguments:

foo(x y, "lose", 4 * z)

Note: whitespace characters (spaces and tabs) are not allowed between the function name and the open-parenthesis of the argument list. If you write whitespace by mistake, awk might think that you mean to concatenate a variable with an expression in parentheses. However, it notices that you used a function name and not a variable name, and reports an error.

When a function is called, it is given a copy of the values of its arguments. This is called call by value. The caller may use a variable as the expression for the argument, but the called function does not know this: all it knows is what value the argument had. For example, if you write this code:

foo = "bar"
z = myfunc(foo)

then you should not think of the argument to myfunc as being "the variable foo". Instead, think of the argument as the string value, "bar".

If the function myfunc alters the values of its local variables, this has no effect on any other variables. In particular, if myfunc does this:

function myfunc (win) {
  print win
  win = "zzz"
  print win
}

to change its first argument variable win, this does not change the value of foo in the caller. The role of foo in calling myfunc ended when its value, "bar", was computed. If win also exists outside of myfunc, the function body cannot alter this outer value, because it is shadowed during the execution of myfunc and cannot be seen or changed from there.

However, when arrays are the parameters to functions, they are not copied. Instead, the array itself is made available for direct manipulation by the function. This is usually called call by reference. Changes made to an array parameter inside the body of a function are visible outside that function. This can be very dangerous if you don't watch what you are doing. For example:

function changeit (array, ind, nvalue) {
     array[ind] = nvalue
}

BEGIN {
           a[1] = 1 ; a[2] = 2 ; a[3] = 3
           changeit(a, 2, "two")
           printf "a[1] = %s, a[2] = %s, a[3] = %s\n", a[1], a[2], a[3]
      }

prints `a[1] = 1, a[2] = two, a[3] = 3', because calling changeit stores "two" in the second element of a.

The return Statement

The body of a user-defined function can contain a return statement. This statement returns control to the rest of the awk program. It can also be used to return a value for use in the rest of the awk program. It looks like this:

return expression

The expression part is optional. If it is omitted, then the returned value is undefined and, therefore, unpredictable.

A return statement with no value expression is assumed at the end of every function definition. So if control reaches the end of the function definition, then the function returns an unpredictable value.

Here is an example of a user-defined function that returns a value for the largest number among the elements of an array:

function maxelt (vec,   i, ret) {
     for (i in vec) {
          if (ret == "" || vec[i] > ret)
               ret = vec[i]
     }
     return ret
}

You call maxelt with one argument, an array name. The local variables i and ret are not intended to be arguments; while there is nothing to stop you from passing two or three arguments to maxelt, the results would be strange. The extra space before i in the function parameter list is to indicate that i and ret are not supposed to be arguments. This is a convention which you should follow when you define functions.

Here is a program that uses our maxelt function. It loads an array, calls maxelt, and then reports the maximum number in that array:

awk '
function maxelt (vec,   i, ret) {
     for (i in vec) {
          if (ret == "" || vec[i] > ret)
               ret = vec[i]
     }
     return ret
}

# Load all fields of each record into nums.
{
          for(i = 1; i <= NF; i++)
               nums[NR, i] = $i
}

END {
     print maxelt(nums)
}'

Given the following input:

 1 5 23 8 16
44 3 5 2 8 26
256 291 1396 2962 100
-6 467 998 1101
99385 11 0 225

our program tells us (predictably) that:

99385

is the largest number in our array.

Go to the previous, next section.